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Abstract

This paper introduces a method to extract fingerprints of any surface
or solid object by taking the eigenvalues of its respective Laplace-
Beltrami operator. Using an object’s spectrum (i.e. the family of
its eigenvalues) as a fingerprint for its shape is motivated by the
fact that the related eigenvalues are isometry invariants of the ob-
ject. Employing the Laplace-Beltrami spectra (not the spectra of
the mesh Laplacian) as fingerprints of surfaces and solids is a novel
approach in the field of geometric modeling and computer graphics.
Those spectra can be calculated for any representation of the geo-
metric object (e.g. NURBS or any parametrized or implicitly rep-
resented surface or even for polyhedra). Since the spectrum is an
isometry invariant of the respective object this fingerprint is also in-
dependent of the spatial position. Additionally the eigenvalues can
be normalized so that scaling factors for the geometric object can
be obtained easily. Therefore checking if two objects are isometric
needs no prior alignment (registration/localization) of the objects,
but only a comparison of their spectra. With the help of such fin-
gerprints it is possible to support copyright protection, database re-
trieval and quality assessment of digital data representing surfaces
and solids.

CR Categories: I.5.3 [Computing Methodologies]: Pat-
tern Recognition—Similarity measures; J.6 [Computer Applica-
tions]: Computer aided Engineering—Computer aided design
(CAD); K.5.1 [Legal aspects of computing]: Hardware/Software
Protection—Copyrights

Keywords: Laplace-Beltrami operator, shape invariants, finger-
prints, shape matching, database retrieval, copyright protection,
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1 Introduction

The characterization and design of the shape of 3D-objects are cen-
tral problems in computer graphics and geometric modeling. The
development of software and hardware tools useful to design and
visualize the shape of 3D-objects has advanced rapidly during the
past twenty years. Nonetheless fundamental problems pertaining to
the characterization of shape are still widely unresolved. It is for
example a basic question to quickly identify and retrieve a given
object stored in a huge database or to find all similarly shaped ob-
jects. During the past forty years a vast number of shape matching
and searching techniques have been developed (e.g. using moments,
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spherical harmonics or Reeb graphs - a recent survey can be found
in [Iyer et al. 2005], see also [Funkhouser et al. 2003]). It should
be pointed out that most approaches dealing with shape matching
describe procedures to realign the geometric objects (usually called
localization or registration cf. [Prokop and Reeves 1992], [Tucker
and Kurfess 2003]), and work only on a specific representation
(mainly 3D polygonal meshes) of the object.

The point-set of a solid 3D-object with smooth boundary may be
described in very different ways (cf. [Wolter et al. 2004]), for ex-
ample in boundary representation (B-Rep) using NURBS surface
patches. Even when restricted to NURBS surfaces, it is not easy
to decide if the given objects are similar in their shape. A sim-
ple comparison of the control points used to represent the bound-
ary surfaces does not help at all. The problem becomes even more
complicated if we consider the possibility that the solid’s boundary
surfaces might be represented in various other ways e.g. by trigono-
metric or by implicitly defined functions.

In some of these cases the problem of identifying shapes (for ex-
ample to protect the copyright of the designer) has been approached
with the help of watermarks. This is of special interest when dealing
with delicate high precision material e.g. turbine blades, whose de-
sign needs major research effort and expensive investments. Even
though NURBS patches are very popular today, most watermark
techniques deal with polygonal meshes only. Often the watermark
data is embedded into these meshes by slightly modifying the ver-
tex location, the connectivity of the mesh or the frequency domain
(cf. [Benedens 1999], [Ohbuchi et al. 2002]). For NURBS surfaces
watermarking is more difficult and only very few algorithms exist.
An algorithm proposed by Ohbuchi et al. [1999] does not change
the surface, but is not very robust. Generally, watermarks can be
destroyed by a representation change or by a reparametrization of
the object, if they are not embedded into the geometry. On the
other hand, embedding data into geometry rather than into the rep-
resentation changes the shape of the object which is unacceptable
in many cases. Therefore, the shape of an object has to be identified
by geometric invariants that we will call fingerprints or signatures.
An example for a fingerprint of shape intrinsic information used to
identify shape via registration / alignment of umbilics can be found
in [Ko et al. 2003]. Shape intrinsic information does not depend
on the given representation of the shape and can be understood as a
fingerprint of the shape (if enough information is contained). Many
fingerprints (e.g. eigenvalues of the inertia tensor) have strong lim-
itations with respect to the amount of completeness up to which
these invariants determine the shape of the object they are related
to. It would be helpful to find a vector of numbers associated with
the given object having the following properties:

P1. Isometry:
Congruent solids (or isometric surfaces) should have the same
fingerprint being independent of the solid’s given representa-
tion. For some applications it is necessary that the fingerprint
is independent of the object’s size.

P2. Similarity:
Similar shaped solids should have similar fingerprints.
The fingerprint should depend continuously on the shape
deformation.
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P3. Efficiency:
The effort needed to compute those fingerprints should be rea-
sonable.

P4. Completeness:
Ideally, those fingerprints should give a complete characteri-
zation of the shape. One step further it would be desirable that
those fingerprints could be used to reconstruct the solid.

P5. Compression:
In addition it would also be desirable that the fingerprint data
should not be redundant, i.e. a part of it could not be computed
from the rest of the data.

P6. Physicality:
Furthermore, it would be nice if an intuitive geometric or
physical interpretation of the meaning of the fingerprints
would be available.

Concerning property P1 it should be noted that congruent objects,
i.e. objects that can be transformed into each other by a proper or
non-proper Euclidean motion, are always isometric. Furthermore,
isometric solid bodies are always congruent, which is also true for
planar domains. Moreover, the property P1 is important when al-
most isometric objects like hands with different finger positions
or faces with different expressions shall be compared and identi-
fied. See e.g. [Elad and Kimmel 2003] for a method using discrete
geodesic distances and multidimensional scaling to generate similar
signature surfaces, and see [Bronstein et al. 2003] for an application
to face recognition.

This paper proposes to use the eigenvalues of the Laplace operator
of a domain or solid or the Laplace-Beltrami operator of a surface in
the Euclidean space as a fingerprint. This fingerprint (or signature)
can be calculated for different object representations (mentioned
above) and can even be calculated for grayscale or color images
by understanding such an image as height functions or higher di-
mensional manifolds. This fingerprint fulfills the above properties
(with the only exception of P4). It is independent of the spatial po-
sition and (if desired) even of the object’s size, making registration
or localization completely unnecessary. It consists of a family of
positive numbers that can be compared easily and fast, permitting
this approach to be used in time-critical applications like database
retrieval.

To avoid any missunderstanding, note that our Laplace-Beltrami
operator does not operate on any mesh vertices, but rather on the
underlying manifold itself. It is therefore different from discrete
Laplacians on graphs or meshes. Even though these discrete Lapla-
cians have been used for e.g. dimensionality reduction [Belkin and
Niyogi 2003] or mesh compression [Karni and Gotsman 2000], our
introduction of our computation of the Laplace-Beltrami spectra
of the underlying manifolds in the areas of geometric modeling -
CAD in particular and in computer graphics in general - appears
to be completely new with the only exception being [Wolter and
Friese 2000] containing a sketchy description of some basic ideas
and goals discussed in this paper. Moreover the application of
the Laplace-Beltrami spectra as fingerprints in order to discrimi-
nate and search objects in geometric databases appears to be new.
Although there has been done a considerable amount of theoreti-
cal research in geometry on the Laplace-Beltrami operator, there
only exists very little work dealing with computational research
(see e.g. [Descloux and Tolley 1983]).

2 Theoretical Background

In this section we will explain the theoretical background that is
needed to understand the spectrum of the Laplace operator and its
computation. Let f be a real-valued function, with f ∈ C2, de-
fined on a Riemannian manifold M (differentiable manifold with
Riemannian metric). We define the Laplace-Beltrami Operator ∆

of a function f as ∆ f := div(grad f ) with grad f being the gradient
of f and div the divergence on the manifold. The Laplace-Beltrami
operator can also be stated in local coordinates (see [Chavel 1984]).
In this work we restrict ourselves to surfaces in Euclidean space.
The Helmholtz equation (also known as the Laplacian Eigen-
value Problem) is stated as

∆ f =−λ f . (1)

The solutions of this equation represent the spatial part of the solu-
tions of the wave equation. In the surface case (n = 2) f (u,v) can
be understood as the natural vibration form (also eigenfunction) of
a homogeneous membrane with the eigenvalue λ . The solutions of
the general vibration problem are the solutions f (u,v) of this dif-
ferential equation on the surface. Any constants of the material are
ignored. The boundary condition of a fixed membrane is f ≡ 0 on
the boundary of the surface domain (Dirichlet boundary condition).
Because of this physical interpretation the question if the eigenval-
ues of the Laplace operator determine the shape of a planar domain
has been rephrased by the late mathematician L. Bers in a terse, im-
pressively concise and pictorial way: “Can one hear the shape of
a drum?” (cf. [Protter 1987] for a historic account).

2.1 Properties of the Spectrum

The following results on the Laplace-Beltrami operator are well
known:

1. The spectrum is defined to be the family of eigenvalues to
the Laplace eigenvalue problem, consisting of a sequence
0 ≤ λ1 ≤ λ2 ≤ ·· · ↑ +∞, with each eigenvalue repeated
according to its multiplicity and with each associated
eigenspace being finite dimensional ([Berger et al. 1971],
p.142). In the case of a closed manifold without boundary the
first eigenvalue λ1 is equal to zero, because here the constant
functions are a non trivial solution of the Helmholtz equation.
If a boundary exists, the first eigenvalue is always greater
than zero, since the only constant solution is trivial (because
of the boundary condition).

2. The spectrum is an isometric invariant as it only depends on
the gradient and divergence which in turn are defined to be
dependent only on the Riemannian structure of the manifold
(this implies property P1.Invariance).

3. The spectrum depends continuously on the shape of the mem-
brane ([Courant and Hilbert 1993], p.366), thus complying
with property P2.Similarity. Moreover, it can be shown with
similar arguments that the spectrum depends continuously
on the Riemannian metric of the Riemannian manifold in
general.

4. Furthermore, we know that scaling a surface by the factor
a results in scaled eigenvalues by the factor 1

a2 . Therefore,
by normalizing the eigenvalues, shape can be compared
regardless of the objects scale.
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5. Sadly, the spectrum does not completely determine the shape,
even though geometrical data is contained in the eigenvalues.
Finally, in 1992 it could be shown [Gordon et al. 1992]
that pairs of isospectral but not congruent planar domains
exist. Therefore, it will not be possible to satisfy property
P4.Completeness. Nevertheless no three pairwise isospectral
but non-isometric manifolds have been constructed so far
and all known pairs of isospectral planar domains have been
shown to be non-convex having non-smooth boundaries. It
is not sure if triples or isospectral continuous deformations
exist in lower dimensions at all. The counter-examples that
were constructed were always somewhat artificial and appear
to be exceptional. Furthermore some shapes can completely
be characterized by their spectrum (e.g. simple analytic
surfaces of revolution, cf. [Zelditch 1998] or the planar disks,
cf. [Kac 1966]). Therefore, but also for other reasons partly
based on experimental studies, we feel that the spectra of the
Laplace-Beltrami operator have a significant discrimination
power.

6. A substantial amount of geometrical and topological informa-
tion is known to be contained in the spectrum (for example
the dimension and the volume of the manifold). Beyond that,
McKean and Singer [1967] showed that in case of a compact
manifold with boundary the surface area of the boundary can
be obtained from the spectrum. On a surface (dim = 2) the
Riemannian volume is of course the surface area and the Rie-
mannian surface area of the boundary is its length. In case of a
closed surface and of a planar domain with smooth boundary
McKean and Singer deduced the possibility to “hear” the Eu-
ler characteristic (and therefore for planar domains the num-
ber of holes). Until today even more geometrical informa-
tion contained in the spectrum has been discovered by an-
alyzing the trace of the heat kernel and its asymptotic ex-
pansion (cf. [Protter 1987]). These results endorse property
P6.Physicality and even P4.Completeness, since all geomet-
rical and topological properties determined by the spectrum
have to be identical for isospectral objects. In a follow-up pa-
per we will give more details on this subject and show how it
is possible to extract these data from our calculated eigenval-
ues numerically (this has not been done so far). For the proofs
of convergence and description of our algorithm the available
space in this paper is too limited.

2.2 Numerical Computation

For the numerical computation the first step is to translate the Lapla-
cian eigenvalue problem into a variational problem (using Greens
formula) ∫∫

ϕ∆ f dσ =−λ
∫∫

ϕ f dσ (2)

(with dσ = Wd~x = Wdudv being the surface element in the surface
case). We then discretize this problem using the Galerkin technique
and Finite Element Method with linear, quadratic and cubic poly-
nomial form functions ([Strang 1986]) defined on a triangle mesh
to obtain a general eigenvalue problem of the form AU = λBU with
A, B being sparse positive (semi-)definite symmetric band matrices.
The solution vectors U (eigenfunctions) with corresponding eigen-
values λ can then be calculated (e.g. with direct solvers or the Lanc-
zos method). It should be noted that the above integrals are com-
puted on the surface (not on vertices of a given mesh) and are there-
fore relatively independent of the given mesh (as long as the mesh
fulfills some refinement and condition standards). Beyond that, this
method is completely independent of the given parametrization.

In the present state we can use the following object repre-
sentations as input: triangulations of 2d-parameter space to-
gether with any given parametrized surface (including B-Splines
and NURBS), polygonal surfaces, tetrahedrized polyhedra or 3d-
parameter spaces. It is possible to glue parameter spaces with each
other or with themselves in order to construct closed or more com-
plex objects. Furthermore, a surface sensitive triangulation tech-
nique based on [Chen and Bishop 1997] has been implemented for
the creation of high quality meshes on the surfaces. More details
on the implementation will be presented in a follow-up paper.

2.3 Convergence and Accuracy

It is well known that the convergence rate of the FEM method with
degree p behaves asymptotically (with an error of order O(hp+1))
as the element size h tends to zero and if the exact solution contains
no singularities (see e.g. [Zienkiewicz and Taylor 2000]). This is
not true for many discrete Laplace-Beltrami operators defined on
meshes and used for computer graphic applications that are not con-
vergent in general (cf. [Xu 2004]). Furthermore, our approxima-
tions are very accurate as can be verified when comparing the ap-
proximated results with the exact ones known from theory in some
cases (rectangle, circle, sphere, cube, ball, cylinder etc.). Addition-
ally, the fact that we are able to extract the correct geometrical data
(volume, boundary length, Euler characteristic) from the heat trace
expansion indicates that the calculated eigenvalues are very precise
in these cases.

3 Applications

With the help of our shape fingerprints several applications can be
realized. As mentioned before one can use these fingerprints to
identify objects for the purpose of copyright protection, even when
they are given in different representations. Similar objects having
similar fingerprints can be detected fast by comparing only the fin-
gerprints, enabling the use of our technique for database retrieval
and shape matching. Furthermore these fingerprints can be used for
quality assessment, e.g. when converting objects to prove that the
shape of the converted object has not been modified.

In order to apply our technique in these areas three requirements
need to be fulfilled. Firstly the fingerprint data needs to be very
accurate, ensuring that the same fingerprint is calculated for an ob-
ject when using different meshes or even when it is calculated ana-
lytically. This requirement can be fulfilled, by using dense enough
meshes, since the convergence of the FEM is known. Secondly sim-
ilar but different objects need to have different fingerprints, making
it possible to discriminate these objects. This property is only vi-
olated by the artificially constructed isospectral but not isometric
objects described earlier. Thirdly similar objects need to have sim-
ilar fingerprints in order to detect the similarity. This requirement
is completely fulfilled by the spectra.

First we want to corroborate the requirement ”accuracy” by look-
ing at a few example calculations where the exact eigenvalues are
known. The eigenvalues of the unit disk are the squares of the roots
of the Bessel functions Jn ([Courant and Hilbert 1993], p.261). By
approximating the area of the disk with triangles we will always
get a discretization error at the boundary. Therefore the resulting
eigenvalues are not very accurate (the first value having an error of
0.067% with cubic elements and 4021 vertices). These results can
be improved by utilizing a different parametrization (not the iden-
tity) defined on a polygonal parameter space glued with itself at the
appropriate edges as can be seen in figure 1. This way the eigen-
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Figure 1: Parameter space of the disk

value λ99 is approximated with a relative error of only 0.005%.
Generally, we observe an advantage of the Laplace-Beltrami oper-
ator over the simple Laplacian even for planar domains: using the
free choice of a parametrization we have utilized something like
“free form finite elements”. By this means any surface can be tri-
angulated without discretization error at the boundary. The com-
putations of eigenvalues based on these parametrizations are very
accurate.

A similar eigenvalue calculation as in the disk case can be done
for the sphere. Even though the sphere is a surface with curva-
ture, the eigenvalues computed with this parametrization are very
accurate. λ101 = 110 for example is approximated with 5447 nodal
points to be 110.0036093 with a relative error of 0.0033% and with
11522 nodal points to be 110.0003989 with a relative error of only
0.0004%. To show that we can use the surface of a polyhedron
(planar triangular facets) instead of a parametrized surface as input,
we calculated the eigenvalues of a polyhedron approximating the
unit sphere with 1282 vertices and 2560 triangles. The eigenval-
ues (λ1 ≈ 0 , λ2−4 ≈ 2.005, λ4−5 ≈ 6.014 ...) are very close to the
eigenvalues of the sphere (0,2 and 6), as expected, since the poly-
hedron is a good approximation of it and because of the continuity
property of the spectrum (cf. section 2.1). Still it should be noted
that this faceted sphere is of course only an approximation and not
the sphere itself, therefore the spectra have to differ slightly from
each other.

For the purpose of shape comparison and identification we need
to apply a distance calculation to the spectra. In most cases shape
comparison is applied to objects independent of their size. There-
fore the fingerprints (spectra) need to be normalized first. Four nor-
malization methods are possible: The fingerprint can be divided by

1. . . . its first non-zero eigenvalue.

2. . . . the slope of its fitting line.

3. . . . the volume of the manifold (surface area) extracted by ex-
trapolation from the spectrum.

4. . . . the real volume that has been calculated externally via a
pre-process.

The first normalization method is sufficient when trying to identify
an object since the fingerprints will be exactly the same after nor-
malization. The methods two to four can be used if similar shapes
are to be detected. It should be noted that the slope of the fitting line
is a rough approximation to 4π/A where A is the area of the two
dimensional manifold (cf. [Minakshisundaram and Pleijel 1949]).
After normalization the fingerprints are cropped to lower the di-
mension n (to 10-100) and the mutual Euclidean distances of the
resulting n-dimensional vectors can be calculated. It is possible to
use a different distance (another p-Norm, a symmetric Hausdorff
distance or the correlation) but our results show that the Euclidean
distance leads to good results.

For the application of copyright protection, database retrieval and

quality assessment it is necessary that shapes can be identified even
if the object is given in a different parametrization, with a different
spatial position and size. Therefore we computed the fingerprints of
the three B-Spline patches B1,B1′ and B2 (backs of display dum-
mies, see table 2). The patch B1′ is a scaled, translated and ro-
tated version of patch B1 where additionally the degree has been
raised. Patch B2 has a different leaner shape. As expected, the fin-
gerprints of B1 and B1′ are almost identical (distance 0.079) while
the one of B2 differs from the others by a distance of 45.6 (when
scaling with the fitting line and using n = 50 values). When us-
ing different meshes for the calculation, a different representation
as a height function or even when introducing small errors (at the
control points), the fingerprint comparison leads to the same clear
results.

To show how the spectrum can distinguish between different shapes
with the same area, perimeter, incircle, circumcircle and sum of
angles, the eigenvalues of the two polygons Isovol I1 and I2 (cf.
table 2) have been calculated. It can be seen in table 1 that al-

EV patch 1 patch 2 diff.
λ1 1.4303697 1.3619184 0.0684513
λ2 2.9252157 2.4698985 0.4553171
λ3 3.4078884 3.4220482 0.0141597
λ4 4.0994027 3.8857960 0.2136067
λ5 4.6141383 5.3698187 0.7556803

Table 1: Eigenvalues of the iso-domains

ready the first few eigenvalues of the two patches are quite different
from each other. The Euclidean distance of the two normalized 50-
dimensional fingerprints here is 53.5. Even when transforming I1
slowly into I2 by moving the north bay to the right (and keeping
the above specified geometric properties constant), the correspond-
ing continuous movement of the eigenvalues can be detected.

We also applied our technique to a database of 1000 randomly gen-
erated B-Spline surface patches (with 3×3 up to 6×6 coefficients).
By using the Euclidean distance of the normalized 11-dimensional
vectors of eigenvalues, each patch could be uniquely identified even
with deliberately different (not optimal) meshes introducing distinct
calculation errors. Still, these inaccurate eigenvalues yielded dis-
tances of less than 0.02. Furthermore, from the 500.000 possible
pairs of different patches only 300 had a distance of less than 0.3 to
each other, none was closer than 0.15.

As a final example we will calculate the fingerprints of all
the objects depicted in table 2. We have already talked about
B1,B1′,B2, I1 and I2. The objects H1 and H2 (parts of a car hood)
are deformations of each other. The fingerprint of the unit square
has been calculated with our FEM method (S1) and by analytic
methods (SR the real spectrum). The disk fingerprint has been com-
puted with a fine (D1) and a coarser (D2) mesh (both having smooth
boundary) and by using a polygonal disk approximation (linearly
bordered D3). All of these objects shall now be compared with each
other in a way, that not only identifies the identical shapes, but also
detects similarities. For this purpose the fingerprints were first nor-
malized by the slope of the fitting line and then cropped to contain
only the first 50 eigenvalues. To visualize their position, these vec-
tors were embedded linearly into the two dimensional space with
the help of classical multidimensional scaling (MDS), a method
performing a principal coordinate analysis (PCA). When plotting
only the first two dimensions the display error of the real mutual
distances is kept as small as possible [Cox and Cox 2001]. The
2d-MDS plot (Figure 2) can be understood as a projection of the
50 dimensional vectors onto their best fitting plane. It shows very
well how identical objects are mapped to the same spot and how
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Back B1 Back B1’ Back B2 Hood H1 Hood H2

Square Isovol Isovol Disk Disk
S1 SR I1 I2 D1 D2 D3

Table 2: 2d test shapes

similar objects form groups. These are very good results, consid-
ering that only the first two most important dimensions are plotted
and that further information is contained in higher (less important)
dimensions.
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Figure 2: 2d MDS plot of fingerprints

4 Conclusions and Outlook

We have introduced a novel method using the eigenvalues of the
Laplace-Beltrami operator as a fingerprint for a given surface or
solid and showed the possibility of numerically calculating such fin-
gerprints for different types of geometric objects (parametrized sur-
faces including NURBS and polyhedra) independent of the given
spatial location and scaled size. We demonstrated that shape identi-
fication and comparison can be done by using only a few eigen-
values, making it possible to locate objects rapidly within huge
databases. As shown, it is even possible to use the Euclidean dis-
tance of normalized spectra to detect similar objects. Via compar-
ison of these spectral fingerprints it is possible to compare a sus-
picious object with a copyrighted one, to detect if the object might

be an illegal copy. These fingerprints can also be used as a quality
measure when converting surfaces or solids into different represen-
tations.

Moreover we succeeded in numerically extracting the volume,
boundary length and Euler characteristic from the computed spec-
trum. Those numerical computations appear to be new and will be
presented in a follow-up paper. Further research will extend this
work to implicitly defined surfaces and solids employing e.g. new
concepts ([Boissonnat et al. 2004], [Ohtake and Belyaev 2002])
useful to mesh implicit surfaces. As another extension parallel pro-
cessing and multigrid methods could be used to speed up and im-
prove our eigenvalue computation making it possible to use higher
resolutions and to compute spectra of even more complex surfaces
and especially of 3d-solids.
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