Virtual Reality System for 3D Shape Registration from Medical Data including a Haptic Interface and Fast, High Quality Visualization

With the evolution of medical scanning devices, especially Computer Tomography (CT) and Magnetic Resonance Tomography (MRT), 3D volume data is nowadays widely used in modern medicine. These modalities have become an integral part of the clinical practice. The resulting 3D images are used for diagnosis, therapy planning, intervention guidance, and follow-up.

Key Idea

We plan to develop a Virtual Reality (VR) system with a haptic interface to assemble fractured bone. A typical use case would be, for example, pre-surgical planning of an operation for a patient with a splintered fracture. Information on the shape of the bone fragments is obtained from CT images. Enabling technologies will be:

- an interface to interactively perform a coarse alignment of the fragment models aided by collision detection;
- a high quality rendering for interactive visualization;
- automatic fine tuning of the fragment alignment, either based on their mechanical interfaces or based on a complete bone template.

The key idea is to develop a prototype for such a VR system, focusing on important haptic interaction features combined with a fast high quality rendering pipeline. The topic is also supported by Siemens with its R&D Center Siemens Corporate Research (SCR) in Princeton, NJ. The proposed research aims to simplify the merging of Volume rendering and Surface rendering techniques used in Medical Imaging. Further research in this direction could be promising.

Hardware

The prototype system planned to be developed will be implemented using hardware at the Welfenlab including:

- INCA 6D haptic input device;
- stereoscopic HD-Projection System;
- 3D workstation
- IBM BladeCenter H with currently 12 nodes, allowing complex simulations in real time;
- nVidia Tesla GPGPU cluster, allowing complex simulations in real time.

Details

The work will be focused on the interface between visualization and haptic interaction. Tools for prototyping and the necessary segmentation technology will be provided by Siemens Corporate Research.

Visualization Component

The prototype system will visualize the background scan data as well as the segmented bone fragments. Different visualization strategies will be analysed to guarantee visual quality as well as fast interactive reaction times for the real-time visualization during the haptic registration. In order to support the aforementioned goals an approach for voxel data of using multiple resolution levels forming a sparse octree with only non-empty blocks/cells storing strategy will be easily possible. The next step will be to implement a fast collision detection (including some pseudo physical interaction) between the different segment pieces assisting the user controlled process of registration and to align different pieces of segments. This collision detection might also benefit from the sparse octree used for the visualization. Further research in this direction could be promising.

Evaluation

It is planned to evaluate the system with physicians of the Medizinische Hochschule Hannover (MHH). The physicians are collaborators of other research projects done jointly with members of the Welfenlab.

This work is supported by a grant of DAAD (German Academic Exchange Service) within the bounds of the Siemens/DAAD Postgraduate Program.